Буровая на астероиде: добыча внеземного грунта

После того как NASA было вынуждено отказаться от планов освоения Луны, на первое место в списке задач агентства вышел таинственный Марс и астероиды, космические хулиганы, то и дело угрожающие Земле своими рискованными маневрами. Важнейшим этапом их изучения будет масштабная геологоразведка. Ясное дело, альпенштоками и ручными бурами тут не обойтись.

Кометы и астероиды относятся к малоизученным объектам Солнечной системы. Отсюда понятен повышенный интерес ученых к этим зачастую непредсказуемым и смертельно опасным космическим бродягам. Первым проектом в истории их освоения, в котором на ведущих ролях выступили астрогеологи, стала миссия к комете Wild-2, стартовавшая зимой 1999 года. Автоматическую межпланетную станцию Stardust инженеры Lockheed Martin Astronautics создали специально для сбора и доставки на Землю кометного вещества.


На пути к галактической страннице Stardust немного покрутился вокруг Луны, заскочил в гости к маленькому астероиду Аннифранк и в ожидании настоящего дела поработал космическим пылесосом. Проблема сбора микроскопических образцов была решена весьма оригинально: пылинки, летящие на бешеных скоростях, ловила капсула-сачок со 132 ячейками, наполненными аэрогелем. Эта сверхтехнологичная субстанция с рекордно низкой среди твердых тел плотностью была изобретена американцем Стивеном Кистлером еще в 1931 году. Аэрогелевые ловушки работают настолько мягко, что в них не разрушаются даже хрупкие органические молекулы, «налипшие» на космические частицы. 15 января 2006 года капсула со Stardust вернулась на Землю, доставив исследователям уникальный материал в целости и сохранности.

Отправляя аппарат Stardust к комете Вильде, также известной как Wild-2, ученые ожидали увидеть на фотографиях что-то вроде запыленного черного снежка. Вместо этого перед ними предстало твердое небесное тело со сложным рельефом: пиками высотой до 100 м, кратерами глубиной до 150 м. Диаметр самого большого кратера «Левая нога» достигает километра, а по площади он составляет пятую часть поверхности кометы. В образцах пыли была обнаружена аминокислота глицин и редкий на Земле изотоп углерода.

Ученый камикадзе

В случае с кометой Темпеля NASA использовала другой геологический инструмент — довольно грубый, но эффективный. 4 июля 2005 года космический аппарат Deep Impact во время максимального сближения с телом кометы выпустил специальный зонд Impactor, представлявший собой медную торпеду, начиненную исследовательской аппаратурой. Зонд на огромной скорости столкнулся с кометой и разрушился, в результате чего произошел массивный выброс кометного вещества объемом примерно 10 000 т. Тем не менее чувствительные приборы зонда успели сделать экспресс-анализ химического состава ядра кометы. В пробах была обнаружена органика, происхождение которой до сих пор неизвестно.

В июле этого года в Западной Австралии немногочисленные аборигены могли наблюдать феерическое зрелище — огненное шоу возвращения на Землю японского зонда Hayabusa, за семь лет совершившего космическое путешествие протяженностью 2 млрд километров. Железяка размером с двухкамерный холодильник бесследно сгорела в атмосфере, но ее ценный груз — герметичная капсула с несколькими миллиграммами инопланетного вещества — благополучно приземлилась на Зеленом континенте. Японский сокол вошел в историю цивилизации как первый космический аппарат, предпринявший геологические изыскания на астероидах. Как и в случае с кометой Темпеля, японцы выбрали самый простой и единственно возможный на том этапе развития технологии способ получения образцов грунта с затерянного в дебрях космоса гигантского булыжника под названием Итокава — бомбардировку. Бурение на Итокава было бы весьма проблематичным- гравитация на его поверхности в 60 000 раз слабее, чем на Земле.

Образцы грунта, взятые станцией «Венера-13», содержали 45% оксида кремния, 4% оксида калия, 7% оксида кальция. Порода, доставленная на Землю аппаратом «Венера-14», имела несколько иной состав: 49% оксида кремния, 10% оксида кальция и лишь 0,2% оксида калия. На месте посадки «Венеры-14» состав грунта примерно соответствует земному океаническому базальту. Атмосфера Венеры состоит по большей части из углекислого газа (96%) и азота (4%).

Hayabusa подлетел к астероиду и, как гигантский комар, ужалил его двумя тяжелыми танталовыми пеллетами. Пиротехнический заряд разогнал кусочки металла до 1100 км/ч. Поднявшийся при этом фонтан пыли и камешков должен был оказаться в трубе-ловушке. Правда, при обследовании капсулы в ней оказалось всего 5 мг вещества. Возможно, причина столь скудного улова — твердая кремнистая порода, из которой состоит Итокава. Впрочем, существует и другой тип астероидов, сложенных из рыхлых углистых минералов. Именно на них обратили свои взоры инженеры компании Astrium, подразделения европейского концерна EADS.


Заводной механизм

Группа Лайзы Пикок разрабатывает пенетраторы для будущих миссий в пояс астероидов. Технические решения, найденные во время этой работы, помогут в дальнейшем создать более эффективные инструменты для освоения Марса. На астероидах можно потренироваться и командам, занимающимся технологиями транспортировки космических материалов на Землю. Первоначально работы проводились в рамках миссии Marco Polo, в которой участвовали европейское космическое агентство ESA и японское JAXA.

Венера: адская геология

Условия на планете, по иронии судьбы издревле символизирующей любовь, можно назвать настоящим Адом: полтысячи и более градусов жары, жуткое давление в 95 атмосфер и тяжелое пятидесятикилометровое одеяло ядовитой атмосферы. И все же в 1982 году сразу два советских аппарата – Венера-13 и Венера-14 – достигли поверхности этой раскаленной сковородки и провели на ней уникальные буровые операции. Работы осуществлялись на специальных станках, разработанных в Ташкентском КБ машиностроения. Создание грунтозаборного устройства для Венеры заняло полтора года, а до этого в течение пяти лет химики готовили для неё особые сплавы. Конструкторам потребовался новый эффективный электродвигатель. Алмазная буровая коронка станка за две минуты должна была углубиться в очень твердый скальный грунт почти на 3 сантиметра. 120 мотосекунд — это предельный ресурс агрегата в подобных условиях. Транспортировка отдельных колонок керна в герметичный рентгенограф производилась по системе трубопроводов. Для этого использовались пиропатроны, периодически пробивавшие специальные прокладки, через которые внутрь системы проникали атмосферные газы. Под их напором порции грунта проталкивались в камеру, где давление выравнивалось до 0.06 атм благодаря открытию клапана вакуумного баллона. Уникальность этой установки признали даже американцы из NASA, так и не рискнувшие повторить советский трюк с бурением в космическом аду. В 1985 году ташкентское ГЗУ еще раз побывало на Венере в рамках международной миссии к комете Галлея. Модернизированная версия оригинального станка, закрепленная на посадочном аппарате Вега-1, успешно произвела бурение в другом районе планеты. В это же время коллектив ТашКБМ закончил разработку прототипов ГЗУ и пенетраторов для исследований геологии Марса и его спутника Фобоса, но грянувший развал Союза похоронил эти проекты в архивах лабораторий.

Задачей, которую поставили перед группой Лайзы Пикок, было создание простого автоматического механизма без внешнего источника энергии, способного осуществить забор пробы грунта массой 40 г в течение короткого пятисекундного контакта с поверхностью астероида. Такой маневр необходимо было повторить по меньшей мере трижды. Далее собранный материал должен был быть законсервирован и доставлен на Землю. Несмотря на то что миссия была отменена, группа Пикок продолжила работу в расчете на новые проекты.

На старте у инженеров Astrium было довольно пухлое портфолио из 20 оригинальных концепций. Для взятия проб предлагались миниатюрные лопаты, конвейерные ленты, щетки, клейкие пластины и т. д. В итоге из них были выбраны три идеи с минимальным риском отказа в экстремальных условиях открытого космоса — дротик с наконечником в виде цветка, лепестки которого смыкаются при углублении; парный совок, загребающий грунт и захлопывающийся в коробочку; коронообразная выколотка с внутренней нейлоновой щетиной для задержки пылинок. Источник энергии во всех концепциях- мощная витая пружина.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND